# Wave-U-Net: A Multi-Scale Neural Network for **End-to-End Audio Source Separation**

Daniel Stoller<sup>1</sup>, Sebastian Ewert<sup>2</sup> and Simon Dixon<sup>1</sup>

centre for digital music

<sup>1</sup>Queen Mary University of London <sup>2</sup>Spotify London



Source K-1 output

**Summary** 

# **Model architecture**

|                                               | Source 1 output |
|-----------------------------------------------|-----------------|
| Invost current audio source separation models | la se setter e  |
| operate on the magnitude spectrum             |                 |
| Problem: Phase information is ignored,        | ↓               |

affecting separation of overlapping partials

- Possible solution: Using waveforms as input
- New challenge: Temporal modelling
- Separation performance relies on long-range temporal relationships
- High sampling rates lead to large inputs: Existing time-domain models (e.g. WaveNet) are slow
- Our neural network architecture combines benefits of time-domain modelling with performance of spectral-domain models:
- Inspired by the U-Net [2], we repeatedly resample feature maps to compute and combine features at different time scales
- To improve time-domain modelling, we introduce: an adapted upsampling technique, an output artifact suppression framework and an enforced-additivity output layer
- Very encouraging results on SiSEC [3]



Approach

**Model variants** 

## **Motivation**

#### Frequency-domain approaches usually

- ignore the mixture input phase
- do not model the output phase
- The source phase has to be approximately reconstructed, which can create artifacts.

# Time-domain approaches are

- rarely explored in research
- struggling with long-term dependencies promising: successful in other fields
- **Boundary problems:** Previous models [1, 2] predict the *whole* source signal for each mixture snippet
- $\Rightarrow$  Lacking context for border predictions:

| - 20 |
|------|
| - 10 |

- Simple system: Only convolutions and resampling, no I/O pre-/postprocessing
- Resample features each layer
- $\Rightarrow$  Receptive field increases exponentially with the number of layers
- ⇒ Few high-resolution, many low-resolution features as model prior and to reduce memory footprint

## Prediction with input context

Predict source activity for centre part of the mixture

b)

No zero-padding for convolutions

a)

-50

We train several variants of the Wave-U-Net:

- M1: Baseline Wave-U-Net
- M2: M1 + difference output layer
- M3: M2 + proper input context
- M4: M3 + Stereo
- M5: M4 + Learned upsampling layer

We train the U-Net<sup>[2]</sup> with time-domain L2 loss (U7) and spectrogram L1 loss (U7a), and compare to our model similarly (M7).

# **Results**

| Convolution                   |      |       |      |      |      |      |       |       |      |
|-------------------------------|------|-------|------|------|------|------|-------|-------|------|
| Vocal separation (MUSDB [3]): |      |       |      |      |      |      |       |       |      |
| Decimation                    |      | M1    | M2   | M3   | M4   | M5   | M7    | U7    | U7a  |
|                               | Med. | 3.90  | 3.92 | 3.96 | 4.46 | 4.58 | 3.49  | 2.76  | 2.74 |
| Upsampling                    | MAD  | 3.04  | 3.01 | 3.00 | 3.21 | 3.28 | 2.71  | 2.46  | 2.54 |
|                               | Mean | -0.12 | 0.05 | 0.31 | 0.65 | 0.55 | -0.23 | -0.66 | 0.51 |







|                          | SD   | 14.00 | 13.63 | 13.25 | 13.67 | 13.84 | 13.00 | 12.38 | 10.82 |  |
|--------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Med.<br>MAD<br>Acc. Mean | Med. | 7.45  | 7.46  | 7.53  | 10.69 | 10.66 | 7.12  | 6.76  | 6.68  |  |
|                          | 2.08 | 2.10  | 2.11  | 3.15  | 3.10  | 2.04  | 2.00  | 2.04  |       |  |
|                          | Mean | 7.62  | 7.68  | 7.66  | 11.85 | 11.74 | 7.15  | 6.90  | 6.85  |  |
|                          | SD   | 3.93  | 3.84  | 3.90  | 7.03  | 7.05  | 4.10  | 3.67  | 3.60  |  |

# References

[1] E. M. Grais, D. Ward, and M. D. Plumbley. Raw multi-channel audio source separation using multi-resolution convolutional auto-encoders. arXiv preprint arXiv:1803.00702, 2018.

[2] A. Jansson, E. J. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and T. Weyde. Singing voice separation with deep U-Net convolutional networks. In Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), pages 323-332, 2017.

[3] F.-R. Stöter, A. Liutkus, and N. Ito. The 2018 Signal Separation Evaluation Campaign. ArXiv e-prints, 2018.

Figure 1: Concatenating outputs from model predicting N source samples given N mixture samples

Acknowledgments

The code is made freely available online: (https://github.com/f90/Wave-U-Net) implemented in Python and Tensorflow.

Code

This work was partially funded by EPSRC grant EP/L01632X/1.